728x90
반응형

1. 아나콘다 가상환경 세팅

$ conda create -n detectron2 python==3.8 -y
$ conda activate detectron2

 

2. PyTorch 설치

https://pytorch.org/get-started/previous-versions/ 에서 CUDA 버전에 맞는 PyTorch 설치 

#(CUDA 11.0 기준 Torch v1.7.0)
$ conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorch -y

 

3. Detectron2 설치

기본 조건:

  • Linux or macOS with Python ≥ 3.6
  • PyTorch ≥ 1.7 and torchvision that matches the PyTorch installation
  • OpenCV (optional)

1) Linux

https://detectron2.readthedocs.io/en/latest/tutorials/install.html 에서 CUDA와 Torch 버전에 맞게 Detectron2 설치

# (CUDA 11.0 기준 Torch v1.7.0)
$ python -m pip install detectron2 -f \ https://dl.fbaipublicfiles.com/detectron2/wheels/cu110/torch1.7/index.html

https://detectron2.readthedocs.io/en/latest/tutorials/install.html

 

2) macOS

python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'

또는

git clone https://github.com/facebookresearch/detectron2.git
python -m pip install -e detectron2

# On macOS, you may need to prepend the above commands with a few environment variables:
CC=clang CXX=clang++ ARCHFLAGS="-arch x86_64" python -m pip install ...

 

3) Windows

공식적으로는 support 안함

아래 깃허브에서 Detectron2 Windows Build 가능

https://github.com/conansherry/detectron2

 

4) 공식적으로 제공하는 Colab Tutorial 를 복사해서 Colab 에서 학습가능

https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5

 

4. 나머지 필요한 모듈 설치 (opencv, fvcore)

$ pip install opencv-python

$ pip install -U git+https://github.com/facebookresearch/fvcore.git

 

5. Dataset 준비하기

1) train-test split

data 폴더 안에 train / val / test 폴더를 만든 후에 train-test split 하고, 이미지 파일(.jpg) 와 라벨 파일 (.json)을 같이 넣어준다.

$ pip install scikit-learn
from sklearn.model_selection import train_test_split
from glob import glob
import shutil
import os

# 1. 이미지 파일 경로 (뒤에 확장자 포함)
image_files = glob("./data/files/*.JPG")

# 2. 이미지 파일명 가져오기
images = [name.replace(".jpg","") for name in image_files]

#splitting the dataset
#train:val:test = 7:2:1
train_names, test_names = train_test_split(images, test_size=0.3, random_state=777, shuffle=True)
val_names, test_names = train_test_split(test_names, test_size=0.3, random_state=777, shuffle=True)

def batch_move_files(file_list, source_path, destination_path):
    for file in file_list:
        image = file.split('/')[-1] + '.JPG' # .jpg or jpeg
        txt = file.split('/')[-1] + '.json' # .txt or .json
        shutil.copy(os.path.join(source_path, image), destination_path)
        shutil.copy(os.path.join(source_path, txt), destination_path)
    return

# 3. 이미지 파일 경로
source_dir = "./data/files/"

# 4. 분리된 데이터 셋들을 저장할 새로운 경로
test_dir = "./data/test/"
train_dir = "./data/train/"
val_dir = "./data/val/"
os.makedirs(test_dir, exist_ok=True)
os.makedirs(train_dir, exist_ok=True)
os.makedirs(val_dir, exist_ok=True)
batch_move_files(train_names, source_dir, train_dir)
batch_move_files(test_names, source_dir, test_dir)
batch_move_files(val_names, source_dir, val_dir)

 

2) labelme로 라벨링한 annotation을 coco annotation으로 변경

train.json, val.json, test.json 파일 생성

$ pip install labelme
import os
import argparse
import json

from labelme import utils
import numpy as np
import glob
import PIL.Image


class labelme2coco(object):
    def __init__(self, labelme_json=[], save_json_path="./coco.json"):
        """
        :param labelme_json: the list of all labelme json file paths
        :param save_json_path: the path to save new json
        """
        self.labelme_json = labelme_json
        self.save_json_path = save_json_path
        self.images = []
        self.categories = []
        self.annotations = []
        self.label = []
        self.annID = 1
        self.height = 0
        self.width = 0

        self.save_json()

    def data_transfer(self):
        for num, json_file in enumerate(self.labelme_json):
            with open(json_file, "r") as fp:
                data = json.load(fp)
                self.images.append(self.image(data, num))
                for shapes in data["shapes"]:
                    label = shapes["label"].split("_")
                    if label not in self.label:
                        self.label.append(label)
                    points = shapes["points"]
                    self.annotations.append(self.annotation(points, label, num))
                    self.annID += 1

        # Sort all text labels so they are in the same order across data splits.
        self.label.sort()
        for label in self.label:
            self.categories.append(self.category(label))
        for annotation in self.annotations:
            annotation["category_id"] = self.getcatid(annotation["category_id"])

    def image(self, data, num):
        image = {}
        img = utils.img_b64_to_arr(data["imageData"])
        height, width = img.shape[:2]
        img = None
        image["height"] = height
        image["width"] = width
        image["id"] = num
        image["file_name"] = data["imagePath"].split("/")[-1]

        self.height = height
        self.width = width

        return image

    def category(self, label):
        category = {}
        category["supercategory"] = label[0]
        category["id"] = len(self.categories)
        category["name"] = label[0]
        return category

    def annotation(self, points, label, num):
        annotation = {}
        contour = np.array(points)
        x = contour[:, 0]
        y = contour[:, 1]
        area = 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1)))
        annotation["segmentation"] = [list(np.asarray(points).flatten())]
        annotation["iscrowd"] = 0
        annotation["area"] = area
        annotation["image_id"] = num

        annotation["bbox"] = list(map(float, self.getbbox(points)))

        annotation["category_id"] = label[0]  # self.getcatid(label)
        annotation["id"] = self.annID
        return annotation

    def getcatid(self, label):
        for category in self.categories:
            if label == category["name"]:
                return category["id"]
        print("label: {} not in categories: {}.".format(label, self.categories))
        exit()
        return -1

    def getbbox(self, points):
        polygons = points
        mask = self.polygons_to_mask([self.height, self.width], polygons)
        return self.mask2box(mask)

    def mask2box(self, mask):

        index = np.argwhere(mask == 1)
        rows = index[:, 0]
        clos = index[:, 1]

        left_top_r = np.min(rows)  # y
        left_top_c = np.min(clos)  # x

        right_bottom_r = np.max(rows)
        right_bottom_c = np.max(clos)

        return [
            left_top_c,
            left_top_r,
            right_bottom_c - left_top_c,
            right_bottom_r - left_top_r,
        ]

    def polygons_to_mask(self, img_shape, polygons):
        mask = np.zeros(img_shape, dtype=np.uint8)
        mask = PIL.Image.fromarray(mask)
        xy = list(map(tuple, polygons))
        PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
        mask = np.array(mask, dtype=bool)
        return mask

    def data2coco(self):
        data_coco = {}
        data_coco["images"] = self.images
        data_coco["categories"] = self.categories
        data_coco["annotations"] = self.annotations
        return data_coco

    def save_json(self):
        print("save coco json")
        self.data_transfer()
        self.data_coco = self.data2coco()

        print(self.save_json_path)
        os.makedirs(
            os.path.dirname(os.path.abspath(self.save_json_path)), exist_ok=True
        )
        json.dump(self.data_coco, open(self.save_json_path, "w"), indent=4)


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(
        description="labelme annotation to coco data json file."
    )
    parser.add_argument(
        "labelme_images",
        help="Directory to labelme images and annotation json files.",
        type=str,
    )
    parser.add_argument(
        "--output", help="Output json file path.", default="trainval.json"
    )
    args = parser.parse_args()
    labelme_json = glob.glob(os.path.join(args.labelme_images, "*.json"))
    labelme2coco(labelme_json, args.output)

 

6. 학습 코드 작성

Detectron2 에서 제공하는 Colab Beginner Tutorial 베이스로 작성

1) model zoo 에서 사용할 모델 설정 (config file & pretrained weight)

제공되는 Faster R-CNN 모델

 

제공되는 Mask R-CNN 모델

 

2) Num Workers, Batch Size, Learning Rate, Max Iteration, Num Classes, Test Eval Period (Validation 몇 번에 한번 돌리나) 변경

from detectron2.utils.logger import setup_logger
setup_logger()

import numpy as np
import os
from detectron2 import model_zoo
from detectron2.data.datasets import register_coco_instances
from detectron2.evaluation import COCOEvaluator
from detectron2.engine import DefaultTrainer
from detectron2.config import get_cfg
from detectron2.engine.hooks import HookBase
from detectron2.utils.logger import log_every_n_seconds
from detectron2.data import DatasetMapper, build_detection_test_loader
import detectron2.utils.comm as comm
import torch
import time
import datetime
import logging


register_coco_instances("train", {}, "/data/train.json", "/data/train")
register_coco_instances("val", {}, "/data/val.json", "/data/val")
register_coco_instances("test", {}, "/data/test.json", "/data/test")

cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) #mask_rcnn_R_50_FPN_3x.yaml
cfg.DATASETS.TRAIN = ("train",)
cfg.DATASETS.TEST = ("val",)
cfg.DATALOADER.NUM_WORKERS = 2
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
cfg.SOLVER.IMS_PER_BATCH = 16
cfg.SOLVER.BASE_LR = 0.00025
cfg.SOLVER.MAX_ITER = 6000
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
cfg.TEST.EVAL_PERIOD = 500

os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
trainer = MyTrainer(cfg) #DefaultTrainer(cfg)
trainer.resume_or_load(resume=False)
trainer.train()

 

3) Default Trainer 를 사용해서 train 가능하지만, Validation process 를 더해주기 위해서 MyTrainer 를 선언해주고 Default Trainer 대신 MyTrainer 사용

  • Test Eval Period (Validation 몇 번에 한번 돌리나) 사용
  • cfg.TEST.EVAL_PERIOD = 500 이면 6000번의 iteration를 돌때 500번에 한번씩 Validation 진행
class LossEvalHook(HookBase):
    def __init__(self, eval_period, model, data_loader):
        self._model = model
        self._period = eval_period
        self._data_loader = data_loader

    def _do_loss_eval(self):
        # Copying inference_on_dataset from evaluator.py
        total = len(self._data_loader)
        num_warmup = min(5, total - 1)

        start_time = time.perf_counter()
        total_compute_time = 0
        losses = []
        for idx, inputs in enumerate(self._data_loader):
            if idx == num_warmup:
                start_time = time.perf_counter()
                total_compute_time = 0
            start_compute_time = time.perf_counter()
            if torch.cuda.is_available():
                torch.cuda.synchronize()
            total_compute_time += time.perf_counter() - start_compute_time
            iters_after_start = idx + 1 - num_warmup * int(idx >= num_warmup)
            seconds_per_img = total_compute_time / iters_after_start
            if idx >= num_warmup * 2 or seconds_per_img > 5:
                total_seconds_per_img = (time.perf_counter() - start_time) / iters_after_start
                eta = datetime.timedelta(seconds=int(total_seconds_per_img * (total - idx - 1)))
                log_every_n_seconds(
                    logging.INFO,
                    "Loss on Validation  done {}/{}. {:.4f} s / img. ETA={}".format(
                        idx + 1, total, seconds_per_img, str(eta)
                    ),
                    n=5,
                )
            loss_batch = self._get_loss(inputs)
            losses.append(loss_batch)
        mean_loss = np.mean(losses)
        self.trainer.storage.put_scalar('validation_loss', mean_loss)
        comm.synchronize()

        return losses

    def _get_loss(self, data):
        # How loss is calculated on train_loop
        metrics_dict = self._model(data)
        metrics_dict = {
            k: v.detach().cpu().item() if isinstance(v, torch.Tensor) else float(v)
            for k, v in metrics_dict.items()
        }
        total_losses_reduced = sum(loss for loss in metrics_dict.values())
        return total_losses_reduced

    def after_step(self):
        next_iter = self.trainer.iter + 1
        is_final = next_iter == self.trainer.max_iter
        if is_final or (self._period > 0 and next_iter % self._period == 0):
            self._do_loss_eval()
        self.trainer.storage.put_scalars(timetest=12)

class MyTrainer(DefaultTrainer):
    @classmethod
    def build_evaluator(cls, cfg, dataset_name, output_folder=None):
        if output_folder is None:
            output_folder = os.path.join(cfg.OUTPUT_DIR,"inference")
        return COCOEvaluator(dataset_name, cfg, True, output_folder)

    def build_hooks(self):
        hooks = super().build_hooks()
        hooks.insert(-1, LossEvalHook(
            cfg.TEST.EVAL_PERIOD,
            self.model,
            build_detection_test_loader(
                self.cfg,
                self.cfg.DATASETS.TEST[0],
                DatasetMapper(self.cfg, True)
            )
        ))
        return hooks

 

4) train.py 실행

  • output 폴더가 생성되고 weight가 거기에 자동으로 저장됨
728x90
반응형