Detectron2 로 Mask R-CNN 학습하기
1. 아나콘다 가상환경 세팅
$ conda create -n detectron2 python==3.8 -y
$ conda activate detectron2
2. PyTorch 설치
https://pytorch.org/get-started/previous-versions/ 에서 CUDA 버전에 맞는 PyTorch 설치
#(CUDA 11.0 기준 Torch v1.7.0)
$ conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorch -y
3. Detectron2 설치
기본 조건:
- Linux or macOS with Python ≥ 3.6
- PyTorch ≥ 1.7 and torchvision that matches the PyTorch installation
- OpenCV (optional)
1) Linux
https://detectron2.readthedocs.io/en/latest/tutorials/install.html 에서 CUDA와 Torch 버전에 맞게 Detectron2 설치
# (CUDA 11.0 기준 Torch v1.7.0)
$ python -m pip install detectron2 -f \ https://dl.fbaipublicfiles.com/detectron2/wheels/cu110/torch1.7/index.html
2) macOS
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
또는
git clone https://github.com/facebookresearch/detectron2.git
python -m pip install -e detectron2
# On macOS, you may need to prepend the above commands with a few environment variables:
CC=clang CXX=clang++ ARCHFLAGS="-arch x86_64" python -m pip install ...
3) Windows
공식적으로는 support 안함
아래 깃허브에서 Detectron2 Windows Build 가능
https://github.com/conansherry/detectron2
4) 공식적으로 제공하는 Colab Tutorial 를 복사해서 Colab 에서 학습가능
https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5
4. 나머지 필요한 모듈 설치 (opencv, fvcore)
$ pip install opencv-python
$ pip install -U git+https://github.com/facebookresearch/fvcore.git
5. Dataset 준비하기
1) train-test split
data 폴더 안에 train / val / test 폴더를 만든 후에 train-test split 하고, 이미지 파일(.jpg) 와 라벨 파일 (.json)을 같이 넣어준다.
$ pip install scikit-learn
from sklearn.model_selection import train_test_split
from glob import glob
import shutil
import os
# 1. 이미지 파일 경로 (뒤에 확장자 포함)
image_files = glob("./data/files/*.JPG")
# 2. 이미지 파일명 가져오기
images = [name.replace(".jpg","") for name in image_files]
#splitting the dataset
#train:val:test = 7:2:1
train_names, test_names = train_test_split(images, test_size=0.3, random_state=777, shuffle=True)
val_names, test_names = train_test_split(test_names, test_size=0.3, random_state=777, shuffle=True)
def batch_move_files(file_list, source_path, destination_path):
for file in file_list:
image = file.split('/')[-1] + '.JPG' # .jpg or jpeg
txt = file.split('/')[-1] + '.json' # .txt or .json
shutil.copy(os.path.join(source_path, image), destination_path)
shutil.copy(os.path.join(source_path, txt), destination_path)
return
# 3. 이미지 파일 경로
source_dir = "./data/files/"
# 4. 분리된 데이터 셋들을 저장할 새로운 경로
test_dir = "./data/test/"
train_dir = "./data/train/"
val_dir = "./data/val/"
os.makedirs(test_dir, exist_ok=True)
os.makedirs(train_dir, exist_ok=True)
os.makedirs(val_dir, exist_ok=True)
batch_move_files(train_names, source_dir, train_dir)
batch_move_files(test_names, source_dir, test_dir)
batch_move_files(val_names, source_dir, val_dir)
2) labelme로 라벨링한 annotation을 coco annotation으로 변경
train.json, val.json, test.json 파일 생성
$ pip install labelme
import os
import argparse
import json
from labelme import utils
import numpy as np
import glob
import PIL.Image
class labelme2coco(object):
def __init__(self, labelme_json=[], save_json_path="./coco.json"):
"""
:param labelme_json: the list of all labelme json file paths
:param save_json_path: the path to save new json
"""
self.labelme_json = labelme_json
self.save_json_path = save_json_path
self.images = []
self.categories = []
self.annotations = []
self.label = []
self.annID = 1
self.height = 0
self.width = 0
self.save_json()
def data_transfer(self):
for num, json_file in enumerate(self.labelme_json):
with open(json_file, "r") as fp:
data = json.load(fp)
self.images.append(self.image(data, num))
for shapes in data["shapes"]:
label = shapes["label"].split("_")
if label not in self.label:
self.label.append(label)
points = shapes["points"]
self.annotations.append(self.annotation(points, label, num))
self.annID += 1
# Sort all text labels so they are in the same order across data splits.
self.label.sort()
for label in self.label:
self.categories.append(self.category(label))
for annotation in self.annotations:
annotation["category_id"] = self.getcatid(annotation["category_id"])
def image(self, data, num):
image = {}
img = utils.img_b64_to_arr(data["imageData"])
height, width = img.shape[:2]
img = None
image["height"] = height
image["width"] = width
image["id"] = num
image["file_name"] = data["imagePath"].split("/")[-1]
self.height = height
self.width = width
return image
def category(self, label):
category = {}
category["supercategory"] = label[0]
category["id"] = len(self.categories)
category["name"] = label[0]
return category
def annotation(self, points, label, num):
annotation = {}
contour = np.array(points)
x = contour[:, 0]
y = contour[:, 1]
area = 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1)))
annotation["segmentation"] = [list(np.asarray(points).flatten())]
annotation["iscrowd"] = 0
annotation["area"] = area
annotation["image_id"] = num
annotation["bbox"] = list(map(float, self.getbbox(points)))
annotation["category_id"] = label[0] # self.getcatid(label)
annotation["id"] = self.annID
return annotation
def getcatid(self, label):
for category in self.categories:
if label == category["name"]:
return category["id"]
print("label: {} not in categories: {}.".format(label, self.categories))
exit()
return -1
def getbbox(self, points):
polygons = points
mask = self.polygons_to_mask([self.height, self.width], polygons)
return self.mask2box(mask)
def mask2box(self, mask):
index = np.argwhere(mask == 1)
rows = index[:, 0]
clos = index[:, 1]
left_top_r = np.min(rows) # y
left_top_c = np.min(clos) # x
right_bottom_r = np.max(rows)
right_bottom_c = np.max(clos)
return [
left_top_c,
left_top_r,
right_bottom_c - left_top_c,
right_bottom_r - left_top_r,
]
def polygons_to_mask(self, img_shape, polygons):
mask = np.zeros(img_shape, dtype=np.uint8)
mask = PIL.Image.fromarray(mask)
xy = list(map(tuple, polygons))
PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
mask = np.array(mask, dtype=bool)
return mask
def data2coco(self):
data_coco = {}
data_coco["images"] = self.images
data_coco["categories"] = self.categories
data_coco["annotations"] = self.annotations
return data_coco
def save_json(self):
print("save coco json")
self.data_transfer()
self.data_coco = self.data2coco()
print(self.save_json_path)
os.makedirs(
os.path.dirname(os.path.abspath(self.save_json_path)), exist_ok=True
)
json.dump(self.data_coco, open(self.save_json_path, "w"), indent=4)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description="labelme annotation to coco data json file."
)
parser.add_argument(
"labelme_images",
help="Directory to labelme images and annotation json files.",
type=str,
)
parser.add_argument(
"--output", help="Output json file path.", default="trainval.json"
)
args = parser.parse_args()
labelme_json = glob.glob(os.path.join(args.labelme_images, "*.json"))
labelme2coco(labelme_json, args.output)
6. 학습 코드 작성
Detectron2 에서 제공하는 Colab Beginner Tutorial 베이스로 작성
1) model zoo 에서 사용할 모델 설정 (config file & pretrained weight)
- https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md 참고
- cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
- cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
2) Num Workers, Batch Size, Learning Rate, Max Iteration, Num Classes, Test Eval Period (Validation 몇 번에 한번 돌리나) 변경
from detectron2.utils.logger import setup_logger
setup_logger()
import numpy as np
import os
from detectron2 import model_zoo
from detectron2.data.datasets import register_coco_instances
from detectron2.evaluation import COCOEvaluator
from detectron2.engine import DefaultTrainer
from detectron2.config import get_cfg
from detectron2.engine.hooks import HookBase
from detectron2.utils.logger import log_every_n_seconds
from detectron2.data import DatasetMapper, build_detection_test_loader
import detectron2.utils.comm as comm
import torch
import time
import datetime
import logging
register_coco_instances("train", {}, "/data/train.json", "/data/train")
register_coco_instances("val", {}, "/data/val.json", "/data/val")
register_coco_instances("test", {}, "/data/test.json", "/data/test")
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) #mask_rcnn_R_50_FPN_3x.yaml
cfg.DATASETS.TRAIN = ("train",)
cfg.DATASETS.TEST = ("val",)
cfg.DATALOADER.NUM_WORKERS = 2
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
cfg.SOLVER.IMS_PER_BATCH = 16
cfg.SOLVER.BASE_LR = 0.00025
cfg.SOLVER.MAX_ITER = 6000
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
cfg.TEST.EVAL_PERIOD = 500
os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
trainer = MyTrainer(cfg) #DefaultTrainer(cfg)
trainer.resume_or_load(resume=False)
trainer.train()
3) Default Trainer 를 사용해서 train 가능하지만, Validation process 를 더해주기 위해서 MyTrainer 를 선언해주고 Default Trainer 대신 MyTrainer 사용
- Test Eval Period (Validation 몇 번에 한번 돌리나) 사용
- cfg.TEST.EVAL_PERIOD = 500 이면 6000번의 iteration를 돌때 500번에 한번씩 Validation 진행
class LossEvalHook(HookBase):
def __init__(self, eval_period, model, data_loader):
self._model = model
self._period = eval_period
self._data_loader = data_loader
def _do_loss_eval(self):
# Copying inference_on_dataset from evaluator.py
total = len(self._data_loader)
num_warmup = min(5, total - 1)
start_time = time.perf_counter()
total_compute_time = 0
losses = []
for idx, inputs in enumerate(self._data_loader):
if idx == num_warmup:
start_time = time.perf_counter()
total_compute_time = 0
start_compute_time = time.perf_counter()
if torch.cuda.is_available():
torch.cuda.synchronize()
total_compute_time += time.perf_counter() - start_compute_time
iters_after_start = idx + 1 - num_warmup * int(idx >= num_warmup)
seconds_per_img = total_compute_time / iters_after_start
if idx >= num_warmup * 2 or seconds_per_img > 5:
total_seconds_per_img = (time.perf_counter() - start_time) / iters_after_start
eta = datetime.timedelta(seconds=int(total_seconds_per_img * (total - idx - 1)))
log_every_n_seconds(
logging.INFO,
"Loss on Validation done {}/{}. {:.4f} s / img. ETA={}".format(
idx + 1, total, seconds_per_img, str(eta)
),
n=5,
)
loss_batch = self._get_loss(inputs)
losses.append(loss_batch)
mean_loss = np.mean(losses)
self.trainer.storage.put_scalar('validation_loss', mean_loss)
comm.synchronize()
return losses
def _get_loss(self, data):
# How loss is calculated on train_loop
metrics_dict = self._model(data)
metrics_dict = {
k: v.detach().cpu().item() if isinstance(v, torch.Tensor) else float(v)
for k, v in metrics_dict.items()
}
total_losses_reduced = sum(loss for loss in metrics_dict.values())
return total_losses_reduced
def after_step(self):
next_iter = self.trainer.iter + 1
is_final = next_iter == self.trainer.max_iter
if is_final or (self._period > 0 and next_iter % self._period == 0):
self._do_loss_eval()
self.trainer.storage.put_scalars(timetest=12)
class MyTrainer(DefaultTrainer):
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR,"inference")
return COCOEvaluator(dataset_name, cfg, True, output_folder)
def build_hooks(self):
hooks = super().build_hooks()
hooks.insert(-1, LossEvalHook(
cfg.TEST.EVAL_PERIOD,
self.model,
build_detection_test_loader(
self.cfg,
self.cfg.DATASETS.TEST[0],
DatasetMapper(self.cfg, True)
)
))
return hooks
4) train.py 실행
- output 폴더가 생성되고 weight가 거기에 자동으로 저장됨
'AI > Others' 카테고리의 다른 글
[OpenCV] 2개의 이미지를 하나의 윈도우로 보여주는 방법 (0) | 2021.07.02 |
---|---|
'Failed to import pydot. You must `pip install pydot` and install graphviz (0) | 2021.04.26 |
AttributeError: 'tqdm_notebook' object has no attribute 'disp' (0) | 2021.04.26 |
Multi GPU로 학습하기 - 리눅스 / Pytorch (0) | 2021.04.12 |
RTX 3090 Ubuntu 18.04 CUDA, cuDNN (딥러닝 환경 구축) (0) | 2021.03.22 |
댓글
이 글 공유하기
다른 글
-
[OpenCV] 2개의 이미지를 하나의 윈도우로 보여주는 방법
[OpenCV] 2개의 이미지를 하나의 윈도우로 보여주는 방법
2021.07.02 -
'Failed to import pydot. You must `pip install pydot` and install graphviz
'Failed to import pydot. You must `pip install pydot` and install graphviz
2021.04.26 -
AttributeError: 'tqdm_notebook' object has no attribute 'disp'
AttributeError: 'tqdm_notebook' object has no attribute 'disp'
2021.04.26 -
Multi GPU로 학습하기 - 리눅스 / Pytorch
Multi GPU로 학습하기 - 리눅스 / Pytorch
2021.04.12